线程调度之 Round Robin 算法
这里我们直接给出代码,有兴趣者可自行去研究算法细节。
// src/process/scheduler.rs
use alloc::vec::Vec;
#[derive(Default)]
struct RRInfo {
valid: bool,
time: usize,
prev: usize,
next: usize,
}
pub struct RRScheduler {
threads: Vec<RRInfo>,
max_time: usize,
current: usize,
}
impl RRScheduler {
// 设置每个线程连续运行的最大 tick 数
pub fn new(max_time_slice: usize) -> Self {
let mut rr = RRScheduler {
threads: Vec::default(),
max_time: max_time_slice,
current: 0,
};
rr.threads.push(
RRInfo {
valid: false,
time: 0,
prev: 0,
next: 0,
}
);
rr
}
}
impl Scheduler for RRScheduler {
// 分为 1. 新线程 2. 时间片耗尽被切换出的线程 两种情况
fn push(&mut self, tid : Tid) {
let tid = tid + 1;
if tid + 1 > self.threads.len() {
self.threads.resize_with(tid + 1, Default::default);
}
if self.threads[tid].time == 0 {
self.threads[tid].time = self.max_time;
}
let prev = self.threads[0].prev;
self.threads[tid].valid = true;
self.threads[prev].next = tid;
self.threads[tid].prev = prev;
self.threads[0].prev = tid;
self.threads[tid].next = 0;
}
fn pop(&mut self) -> Option<Tid> {
let ret = self.threads[0].next;
if ret != 0 {
let next = self.threads[ret].next;
let prev = self.threads[ret].prev;
self.threads[next].prev = prev;
self.threads[prev].next = next;
self.threads[ret].prev = 0;
self.threads[ret].next = 0;
self.threads[ret].valid = false;
self.current = ret;
Some(ret-1)
}else{
None
}
}
// 当前线程的可用时间片 -= 1
fn tick(&mut self) -> bool{
let tid = self.current;
if tid != 0 {
self.threads[tid].time -= 1;
if self.threads[tid].time == 0 {
return true;
}else{
return false;
}
}
return true;
}
fn exit(&mut self, tid : Tid) {
let tid = tid + 1;
if self.current == tid {
self.current = 0;
}
}
}